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regio-, and chemoselective aspects of these processes.9,17 
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(17) See ref lb, note 6, for an example of a Ti(OR)4-catalyzed trans-
esterification which is facilitated through coordination of a proximate hydroxyl 
group. 
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The epoxide functional group is one of the most useful inter­
mediates in organic synthesis.1 The paramount reason for the 
synthetic importance of the epoxide moiety is the existence of regio-
and stereoselective methods both for constructing it and for 
controlling its subsequent reactions.2 However, in the realm of 
stereoselectivity, one great challenge which had not been met was 
the formation of enantiomerically pure epoxides from achiral 
olefins.3 Having recently discovered a highly enantioselective 
method for epoxidizing olefinic alcohols,4 we wished to demonstrate 
its synthetic utility. Three attractive initial targets were epoxy 
alcohols I,5 2,6 3;7 these are key intermediates in syntheses of 

OH 

1 2 3 

methymycin,5 erythromycin,6 and leukotriene C-I,7 respectively. 
Epoxy alcohol 4 is a less obvious example of a potentially useful 
target molecule; its utility derives from its transformation into 
(+)-disparlure (5), the sex attractant of the gypsy moth. En-
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antioselective syntheses of epoxy alcohols 1 through 4 and the 
conversion of 4 to (+)-disparlure (5) are described here. 

In the first report4 on the asymmetric epoxidation procedure, 
it was emphasized that a limitation existed for cases where the 
epoxy alcohol produced is fairly water soluble. For this reason 
it was not surprising that the original procedure4 gave poor results 
when applied to allylic alcohols 6, 7, and 8. Fortunately, a 
modified workup has been found which allows isolation of epoxy 
alcohols such as 1, 2, and 3 in fair (45%) to good (79%) yields. 
This modified workup is far from a perfect solution to the problem, 
and other approaches are under study. In the meantime it is now 
possible to produce usable amounts of some chiral, water-soluble 
epoxy alcohols. The general epoxidation conditions are shown 
in Scheme I; the first stage of these epoxidations was executed 

(8) Prepared by LiAlH4 reduction of the corresponding aldehyde. The 
aldehyde was obtained by aldol condensation of propionaldehyde according 
to: Doebner, Von O.; Weissenborn, A. Chem. Ber. 1902, 35, 1143. 

(9) (a) [a]24
D -5.8°(c 0.36, CHCl3). (b) [a]2'D +55° (c 0.22, PhH). (c) 

[a]24
D-33.6° (c 0.36, CHCl3). (d) [a]2A

D -33.3° (c 0.24, CHCl3). (e) 66% 
yield after recrystallization from pentane, >95% e.e., mp 62.5-63.0 0C, Ja]20D 
-7.8° (c 1.0, EtOHabs). (f) [a]20

D +0.5° (c 10.0, CCl4). 
(10) Chemical Samples Co. 
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exactly as described earlier.4 However, the workup was quite 
different: At the end of the indicated time period, dimethyl sulfide 
(4 equiv) was added to the reaction mixture at -20 0C. After 
the mixture was stirred for 40 min at -20 0C (CCl4/dry ice), the 
cold reaction mixture was added slowly to a vigorously stirred, 
saturated (~5%) aqueous solution of sodium fluoride (the volume 
of this NaF solution was about twice the volume of the original 
reaction mixture) at room temperature. Stirring was continued 
for the specified time then the aqueous phase was saturated with 
sodium chloride. The gel-like, precipitated inorganic fluorides 
were removed by filtration through a pad of Celite, and the phases 
were separated. The aqueous phase was extracted three more 
times with CH2Cl2 and the combined organic extracts were dried 
(Na2SO4) and concentrated to give a mixture of the desired epoxy 
alcohol and the recovered tartrate diester. Final purification was 
effected by chromatography on silica gel.13 In the original 
procedure the dialkyl tartrate would be removed in a two-phase 
alkaline hydrolysis step, but here such a step destroys the 
water-soluble epoxy alcohol. Fortunately, dimethyl tartrate 
(DMT), diethyl tartrate (DET), and diisopropyl tartrate (DIPT) 
have quite different Rvalues on silica gel (0.1, DMT; 0.27, DET; 
0.44, DIPT; hexane:ethyl acetate, 7:3). Chromatographic sepa­
ration of the epoxy alcohol from the dialkyl tartrate is easy if the 
appropriate tartrate ester is chosen. 

Epoxy alcohol ester 3 was also prepared by an alternate se­
quence starting from butadiene dimer 9 (Scheme II). This is 
probably the best current route to this SRS precursor (3). 

The last example is synthesis of epoxy alcohol 4 and thence 
(+)-disparlure (Scheme III). The crystallinity of epoxy alcohol 
4 greatly simplifies its isolation (no chromatography needed). The 
final step involves hydrogenation of an a,/3-unsaturated epoxide 
and gives in addition to 5 a ketonic product (ratio of 5 to byproduct 
is 72:28). The ketone presumably arises by rhodium(I)-catalyzed 
rearrangement of the unsaturated epoxide in a process similar to 
that reported by Noyori.18 The ketone impurity was reduced to 
an alcohol (NaBH4, EtOH, 15 min) and then easily removed by 
flash19 chromatography (silica gel, 2% ether-petroleum ether) to 
give the pure epoxide 5 in 60% yield from the unsaturated epoxide. 
We have also produced pure (-)-disparlure [[a]20

D -0.5° (c 10, 
CCl4)] by this same synthetic sequence (Scheme III) with the 
obvious exception that (+)-DET was used in the epoxidation step. 
Both disparalure enantiomers gave appropriate combustion 
analyses and exhibited spectral and chromatographic properties 
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50-60% distilled yield by the method of Austin (Austin, P. C. J. Chem. Soc. 
1928, 1831). When the epoxidation of 7 was performed by using (+)-DIPT, 
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consonant with literature data.20 Further proof of structure and 
absolute configuration was obtained in field tests.21 
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The distribution of products arising from unimolecular disso­
ciation of an internally excited molecule is a function of both its 
internal energy and the observation time.1 Methods which allow 
control of these factors provide access to unimolecular rate con­
stants2 on one hand and give a highly resolved view of the dis­
sociation chemistry on the other. We now show that collision-
induced dissociation, done with resolution of scattering angle, gives 
data which are comparable to that provided by field ionization 
kinetics (FIK).3 This method provides good time resolution at 
lifetimes approaching 10 ps and is proving an effective means of 
studying unimolecular chemistry;4 the angle-resolved procedure 
may have comparable value since collisionally activated molecules 
can be selected so that they dissociate at times comparable to the 
fastest observed in FIK while a continuous range of longer lifetimes 
is also accessible. 

In angle-resolved mass spectrometry5 the collisionally induced 
dissociation of an ion, Hi1

+, to give a product, m2
+, is monitored 

as a fuction of the laboratory scattering angle, 8. Large (ap­
proximately 10 eV) energy depositions are accessible at scattering 
angles of ca. 1° for kilovolt energy ions. The methodology has 
previously been shown to allow selection of the internal energy 
deposited in an ion 6,T and thus to serve as a means of obtaining 
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